NeurIPS 2018 Paper: Watch Your Step - Learning Node Embeddings via Graph Attention

NeurIPS 2018 Paper: Watch Your Step - Learning Node Embeddings via Graph Attention

Representation Learning on GraphsПодробнее

Representation Learning on Graphs

[NIPS/NeurIPS 2018] Deepcode: Feedback Codes via Deep LearningПодробнее

[NIPS/NeurIPS 2018] Deepcode: Feedback Codes via Deep Learning

On the Dimensionality of Word Embeddings (NeurIPS 2018)Подробнее

On the Dimensionality of Word Embeddings (NeurIPS 2018)

node embeddingПодробнее

node embedding

Norm matters, a spotlight paper in NeurIPS 2018.Подробнее

Norm matters, a spotlight paper in NeurIPS 2018.

Hanjun Dai, Graph Representation Learning with Deep Embedding ApproachПодробнее

Hanjun Dai, Graph Representation Learning with Deep Embedding Approach

Graph Classification using Structural AttentionПодробнее

Graph Classification using Structural Attention

[NIPS/NeurIPS 2018] Learning Task Specifications from DemonstrationsПодробнее

[NIPS/NeurIPS 2018] Learning Task Specifications from Demonstrations

Incorporating Context into Language Encoding Models for fMRI (Jain & Huth, NeurIPS 2018)Подробнее

Incorporating Context into Language Encoding Models for fMRI (Jain & Huth, NeurIPS 2018)

NeurIPS 2018 Preview with NVIDIA’s Bryan CatanzaroПодробнее

NeurIPS 2018 Preview with NVIDIA’s Bryan Catanzaro

NeurIPS 2019 | Graph Representation Learning 3Подробнее

NeurIPS 2019 | Graph Representation Learning 3

NeurIPS 2019: Understanding the Representation Power of Graph Neural Nets in Learning Graph TopologyПодробнее

NeurIPS 2019: Understanding the Representation Power of Graph Neural Nets in Learning Graph Topology

Stanford CS224W: Machine Learning with Graphs | 2021 | Lecture 3.1 - Node EmbeddingsПодробнее

Stanford CS224W: Machine Learning with Graphs | 2021 | Lecture 3.1 - Node Embeddings