Osbert Bastani - Interpretable Machine Learning via Program Synthesis - IPAM at UCLA

Osbert Bastani - Interpretable Machine Learning via Program Synthesis - IPAM at UCLA

Bistra Dilkina - Machine Learning for MIP Solving - IPAM at UCLAПодробнее

Bistra Dilkina - Machine Learning for MIP Solving - IPAM at UCLA

Safe Autonomy Seminar - Osbert Bastani - Towards Verifiable Machine LearningПодробнее

Safe Autonomy Seminar - Osbert Bastani - Towards Verifiable Machine Learning

Timo Berthold - Machine Learning inside MIP solvers - IPAM at UCLAПодробнее

Timo Berthold - Machine Learning inside MIP solvers - IPAM at UCLA

Wojciech Samek - Concept-Level Explainable AI - IPAM at UCLAПодробнее

Wojciech Samek - Concept-Level Explainable AI - IPAM at UCLA

Swarat Chaudhuri - Abstraction and Evolution with Large Language Models - IPAM at UCLAПодробнее

Swarat Chaudhuri - Abstraction and Evolution with Large Language Models - IPAM at UCLA

Julia Westermayr - Physically inspired machine learning for excited states - IPAM at UCLAПодробнее

Julia Westermayr - Physically inspired machine learning for excited states - IPAM at UCLA

Petra Hozzova - Automation of Induction in Saturation - IPAM at UCLAПодробнее

Petra Hozzova - Automation of Induction in Saturation - IPAM at UCLA

Pascal Van Hentenryck - Fusing Machine Learning and Optimization - IPAM at UCLAПодробнее

Pascal Van Hentenryck - Fusing Machine Learning and Optimization - IPAM at UCLA

Bobak Toussi Kiani - Quantum Machine Learning - IPAM at UCLAПодробнее

Bobak Toussi Kiani - Quantum Machine Learning - IPAM at UCLA

Michele Ceriotti - Machine learning for atomic-scale modeling - potentials and beyond - IPAM at UCLAПодробнее

Michele Ceriotti - Machine learning for atomic-scale modeling - potentials and beyond - IPAM at UCLA